Corning Municipal Airport

Pavement Management Report

PREPARED BY

Applied Pavement Technology, Inc. 1908 South First Street, Suite 201 Champaign, Illinois 61820 (217) 398-3977 www.appliedpavement.com

AUGUST 2025

CORNING MUNICIPAL AIRPORT PAVEMENT MANAGEMENT REPORT

Prepared For:

Iowa Department of Transportation
Modal Transportation Bureau
800 Lincoln Way
Ames, Iowa 50010
515-239-1101
https://iowadot.gov/modes-travel/aviation

Prepared By:

Applied Pavement Technology, Inc. 1908 South First Street, Suite 201 Champaign, Illinois 61820 217-398-3977 https://www.appliedpavement.com

In Association With:

Robinson Engineering Company Consulting Engineers 819 Second Street NE Independence, Iowa 50644 319-334-7211

TABLE OF CONTENTS

INTRODUCTION	1
PAVEMENT INVENTORY	3
PAVEMENT EVALUATION	
Pavement Evaluation Procedure	6
Pavement Evaluation Results	
Inspection Comments	
Runway	
Taxiway	
Apron	
PAVEMENT MAINTENANCE AND REHABILITATION PROGRAM	
Analysis Parameters	
Critical PCIs	
Localized Preventive Maintenance Policies and Unit Costs	
Major Rehabilitation Unit Costs	
Budget and Inflation Rate	
Analysis Approach	
Analysis Results	
General Maintenance Recommendations	14
SUMMARY	
REFERENCES	
LIST OF FIGURES	
	4
Figure 1. Pavement condition versus cost of repair.	1
Figure 2. Pavement area by branch use at Corning Municipal Airport	4
Figure 3. Corning Municipal Airport network definition map.	
Figure 4. Visual representation of PCI scale on typical pavement surfaces	
Figure 5. PCI versus repair type	
Figure 6. Pavement area by PCI range at Corning Municipal Airport	٥٥
Figure 7. Area-weighted PCI by branch use at Corning Municipal Airport	
Figure 8. Corning Municipal Airport PCI map	10
LIST OF TABLES	
Table 1. 2025 pavement evaluation results	11
Table 2. 5-year M&R program under an unlimited funding analysis scenario	14
= , p g a	

APPENDIXES

Appendix A. Cause of Distress Tables	A-1
Appendix B. Inspection Photographs	
Appendix C. Inspection Report	
Appendix D. Work History Report	
Appendix E. Localized Preventive Maintenance Policies and Unit Cost Tables	
Appendix F. Year 2025 Localized Preventive Maintenance Details	

Introduction August 2025

INTRODUCTION

Applied Pavement Technology, Inc. (APTech), with assistance from Robinson Engineering Company Consulting Engineers (Robinson), updated the Airport Pavement Management System (APMS) for the Iowa Department of Transportation, Modal Transportation Bureau (Iowa DOT). The APMS provides a means to monitor the condition of the pavements within the State of Iowa and to proactively plan for their preservation.

As part of this project, pavement conditions at Corning Municipal Airport were visually assessed in March 2025 using the Pavement Condition Index (PCI) procedure. During a PCI inspection, the types, severities, and amounts of distress present on the pavement surface are quantified. This information is then used to develop a composite index that represents the overall condition of the pavement in numerical terms, ranging from 0 (*Failed*) to 100 (*Excellent*). The PCI provides an overall measure of condition and an indication of the level of work that will be required to maintain or repair a pavement. The distress information also provides insight into what is causing the pavement to deteriorate, which is the first step in selecting the appropriate repair action to correct the problem.

Programmed into an APMS, PCI data and results are used to determine when preventive maintenance actions (such as crack or joint sealing) are advisable and to identify the most cost-effective time to perform major rehabilitation (such as an overlay or whitetopping). Delaying maintenance and rehabilitation (M&R) until a pavement structure has seriously degraded can cost many times more than if M&R was applied earlier in a pavement's life cycle, as shown in Figure 1. From a safety perspective, pavement distresses, such as cracks and loose debris, may pose risks in terms of the potential for aircraft tire damage and the ability of a pilot to safely control aircraft.

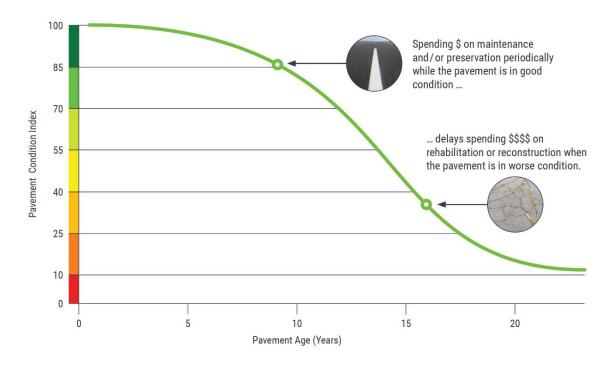


Figure 1. Pavement condition versus cost of repair.

Introduction August 2025

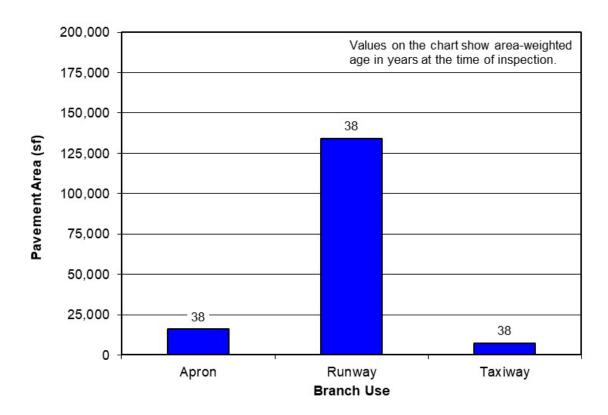
The pavement evaluation results for Corning Municipal Airport are presented within this report and can be used by Corning Municipal Airport, the Iowa DOT, and the Federal Aviation Administration (FAA) to identify, prioritize, and schedule pavement M&R actions at the airport. In addition to this report, the web-based interactive pavement data visualization tool IDEA, containing the information collected during this project, was updated and may be accessed from the Iowa DOT's website or directly (Iowa APMS IDEA).

Pavement Inventory August 2025

PAVEMENT INVENTORY

The project began with a review of the existing inventory information pertaining to the pavements at Corning Municipal Airport. The date of original construction, along with the date of any subsequent rehabilitation; the location of completed work; and the type of work undertaken were gathered. The information was used to update the pavement management database and associated maps, as necessary, to account for pavement-related work that had been undertaken since the last time the airport was evaluated in 2018.

The pavement network at Corning Municipal Airport was then divided into branches, sections, and sample units. A branch is a single entity that serves a distinct function. For example, a runway is considered a branch because it serves a single function (allowing aircraft to take off and land). Taxiways, aprons, and T-hangars are also separate branches.


Each branch was further divided into sections. Traditionally, sections are defined as parts of the branch that share common attributes, such as cross section, date of last construction, traffic level, and performance. Using this approach, if a runway was built in 1968 and then extended in 1984, it would contain two separate sections.

To estimate the overall condition of a pavement section, each section was subdivided into sample units. Portions of these sample units were evaluated during the pavement inspection, and the collected information was extrapolated to predict the overall section condition and quantities of distress.

Approximately 157,600 square feet of pavement were evaluated at Corning Municipal Airport, as illustrated in Figure 2. This figure also shows the area-weighted age in years of the pavements at the time of the inspection. Figure 3 provides a map that details how the pavement network was divided into management units and identifies the sample units that were evaluated during the pavement inspection at Corning Municipal Airport.

Pavement Inventory August 2025

Figure 2. Pavement area by branch use at Corning Municipal Airport.

FIGURE 3. NETWORK DEFINITION MAP. A01CO-01 (84) — T01CO-01 (70) 3 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 € R18CO-01 (74) applied pavement 1908 South First Street, Suite 201 Champaign, IL 61820 Tel: (217) 398-3977 Fax: (217) 398-4027 TECHNOLOGY Iowa Department of Transportation NETWORK DEFINITION LEGEND Office of Aviation BRANCH IDENTIFIER SECTION IDENTIFIER PCI VALUE Corning Municipal Airport Corning, Iowa R12AG-01 (79) SECTION BREAK LINE Network Definition Map SAMPLE UNIT BREAK LINE NOV. 2024 JOB NUMBER: 2021-125-AM03 NOV. 2024 LJR SAMPLE UNIT NUMBER 1"=200' JUN. 2025 KEW KEW SAMPLE UNIT INSPECTED ADDITIONAL SAMPLE UNIT NET. DEF. Corning.dwg

PAVEMENT EVALUATION

Pavement Evaluation Procedure

APTech visually inspected the pavements at Corning Municipal Airport using the PCI procedure described in:

- FAA Advisory Circular 150/5380-6C, <u>Guidelines and Procedures for Maintenance of</u> Airport Pavements.
- FAA Advisory Circular 150/5380-7B, Airport Pavement Management Program (PMP).
- ASTM D5340, Standard Test Method for Airport Pavement Condition Index Surveys.

During the PCI inspection, a cursory inspection of the entirety of a pavement section was performed. Sample units identified for more detailed inspection were verified, and adjustments to the selected sample units for inspection were made as needed to ensure an accurate assessment of the pavement's condition. Data pertaining to the types, severities, and quantities of observed pavement distresses were then collected within each sample unit. These data were then used to calculate the composite PCI of each pavement section. The PCI provides a numerical indication of overall pavement condition, as illustrated in Figure 4. The PCI ranges from a value of 0, which represents a pavement in a *Failed* condition, to a value of 100, which represents a pavement in *Excellent* condition with no visible signs of deterioration. It is important to note that factors other than overall PCI need to be considered when identifying the appropriate type of repair, including types of distress present and rate of deterioration. Also, since the PCI does not assess the structural integrity or capacity of the pavement structure, further testing may be needed to validate and refine the treatment strategy.

PCI: 100

PCI: 83

Figure 4. Visual representation of PCI scale on typical pavement surfaces.

Note: Photographs shown are not specific to Corning Municipal Airport.

PCI: 66

Generally, pavements with relatively high PCIs that are not exhibiting significant load-related distress will benefit from preventive maintenance actions, such as crack sealing or joint resealing. As the PCI drops, the pavements may require major rehabilitation, such as an overlay or whitetopping. In some situations where the PCI has dropped low enough, reconstruction may be the only viable alternative due to the substantial damage to the pavement structure. Figure 5 illustrates how the appropriate repair type varies with the PCI of a pavement section and provides the corresponding colors used for the maps and charts in this report for each range of PCIs.

PCI Range

86-100

71-85

Preventive Maintenance

56-70

Major Rehabilitation

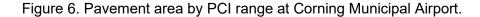
26-40

11-25

Reconstruction

Figure 5. PCI versus repair type.

The types of distress identified during the PCI inspection provide insight into the cause of pavement deterioration, which is useful when selecting M&R strategies. Understanding the cause of distress helps in selecting a rehabilitation alternative that corrects the cause and thus eliminates or delays its recurrence. PCI distress types are characterized as:


- Load-related—These distress types are defined as being caused by aircraft or vehicular traffic and may indicate a structural deficiency. Examples of load-related distress include alligator cracking on asphalt-surfaced pavements and corner breaks on portland cement concrete (PCC) pavements.
- Climate/durability-related—These distress types often signify the presence of aged or environmentally susceptible (or both) material and include durability-related issues.
 Examples of climate/durability-related distress include weathering on asphalt-surfaced pavements, which is climate-related, and durability cracking on PCC pavements, which is durability-related.
- Other—Distress types that fall into this category cannot be attributed solely to load or climate/durability. Examples of this type of distress include depressions on asphaltsurfaced pavements and shrinkage cracking on PCC pavements.

Appendix A identifies the distress types considered during a PCI inspection and describes the likely cause of each distress type. It should be noted that a PCI is based on visual signs of pavement deterioration and does not provide a measure of structural capacity.

Pavement Evaluation Results

The pavements at Corning Municipal Airport were inspected in March 2025. The 2025 area-weighted condition of Corning Municipal Airport is 75, with conditions ranging from 70 to 84 (on a scale of 0 [failed] to 100 [excellent]). During the previous pavement inspection in 2018, the area-weighted PCI of the airport was 76.

Figure 6 summarizes the overall condition of the pavements at Corning Municipal Airport, and Figure 7 presents area-weighted condition (average PCI adjusted to account for the relative size of the pavement sections) by branch use. Figure 8 is a map that displays the condition of the evaluated pavements. Table 1 summarizes the results of the pavement evaluation. Appendix B presents photographs taken during the PCI inspection, and Appendix C contains detailed information on the distress types observed during the visual survey. Appendix D includes detailed work history information that was collected during the record review process.

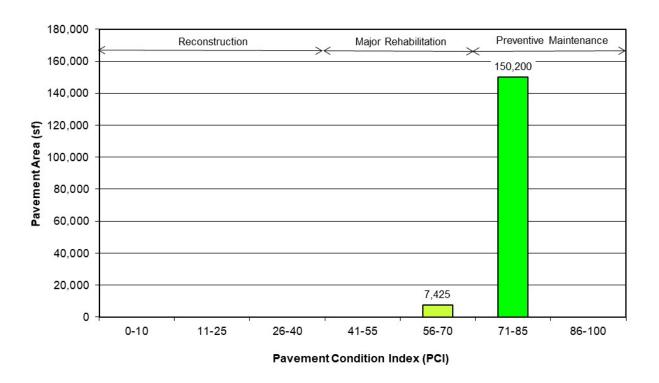
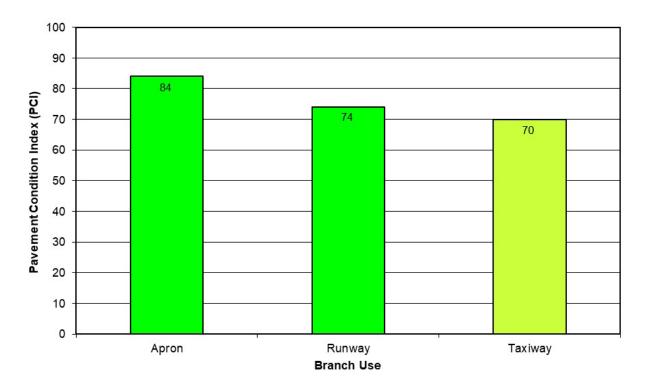
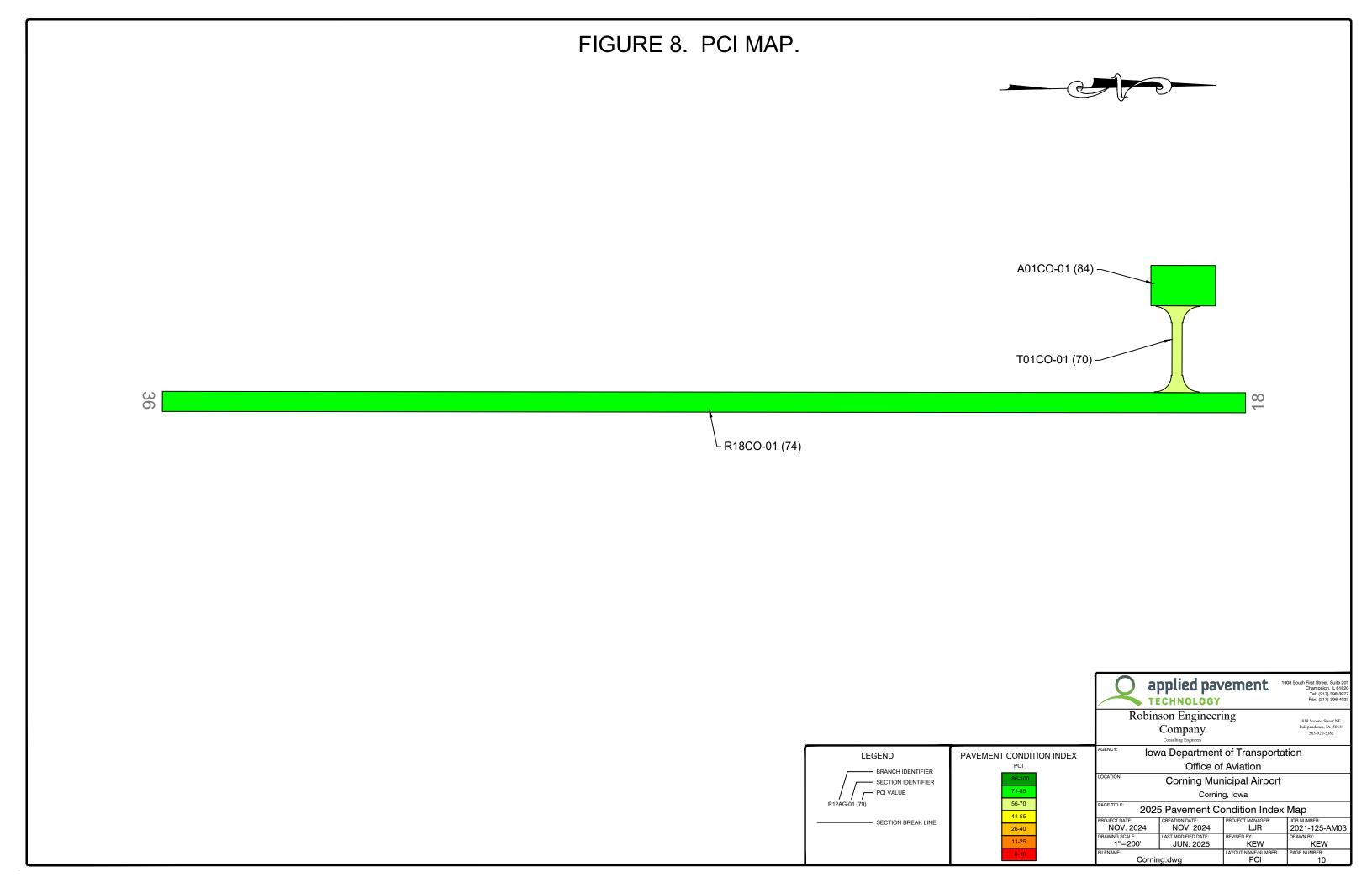




Figure 7. Area-weighted PCI by branch use at Corning Municipal Airport.

(Values on chart are area weighted.)

Pavement Evaluation

Table 1. 2025 pavement evaluation results.

Branch	Section	Surface Type	Section Area (sf)	LCD	2025 PCI	% Distress Due to Load	% Distress Due to Climate/ Durability	% Distress Due to Other	Type of Distress
A01CO	01	PCC	16,000	6/1/1987	84	61	7	32	ASR, Corner Spalling, Faulting, Joint Spalling, Joint Seal Damage, LTD Cracking, Shattered Slab, Shrinkage Cracking
R18CO	01	PCC	134,200	6/1/1987	74	29	5	66	ASR, Corner Spalling, Joint Spalling, Joint Seal Damage, LTD Cracking, Shattered Slab, Small Patch
T01CO	01	PCC	7,425	6/1/1987	70	4	22	74	Corner Spalling, Faulting, Joint Spalling, Joint Seal Damage, LTD Cracking

Table Notes:

- 1. See Figure 3 for the location of the branch and section.
- 2. Surface Type: AC = asphalt cement concrete; AAC = asphalt overlay on AC; PCC = portland cement concrete; APC = asphalt overlay on PCC.
- 3. LCD = last construction date.
- 4. Distress due to load includes distress types that are attributed to a structural deficiency in the pavement, such as alligator cracking or rutting on asphalt-surfaced pavements or shattered slabs on PCC pavements.
- 5. Distress due to climate or durability includes distress types that are attributed to either the aging of the pavement and the effects of the environment (such as weathering, raveling, or block cracking on asphalt-surfaced pavements) or to a materials-related problem (such as durability cracking or alkali-silica reaction [ASR] on PCC pavements). If materials-related distresses were recorded during the inspection, further laboratory testing is required to definitively determine the type present.
- 6. Distress due to other refers to distress types that are not attributed to one factor but rather may be caused by a combination of factors.
- 7. Distress types are defined by ASTM D5340. L&T cracking = longitudinal and transverse cracking; LTD cracking = longitudinal, transverse, and diagonal cracking; ASR = alkali-silica reaction.

Inspection Comments

Corning Municipal Airport was inspected on March 28, 2025. There were three pavement sections defined during the inspection. Alkali-silica reaction (ASR) was recorded at this airport according to the PCI procedure. The ASR was recorded where evidence of a precipitate was observed within some of the cracking in the PCC surface. It should be noted that laboratory testing in the form of petrographic analysis is the only definitive way to validate the presence of ASR; however, the formation of a precipitate is evidence of a reaction consistent with this type of materials-related distress.

Runway

Runway 18/36 consisted of one section that contained areas of low-severity ASR, small patching and joint seal damage; all severities of corner spalling; and low- and medium-severity joint spalling and longitudinal, transverse, and diagonal (LTD) cracking. An atypical area of medium-severity shattered slab was observed and recorded as an additional sample unit in accordance with ASTM D5340.

Taxiway

The taxiway was comprised of one section. Low-severity LTD cracking and low- and medium-severity corner spalling, faulting, joint seal damage, and joint spalling were observed in Section 01.

Apron

The apron area contained one section. In Section 01, low-severity ASR, faulting, joint seal damage, joint spalling, and LTD cracking; low- and medium-severity corner spalling; and shrinkage cracking were identified. An atypical area of medium- and high-severity shattered slab was observed and recorded as an additional sample unit in accordance with ASTM D5340.

PAVEMENT MAINTENANCE AND REHABILITATION PROGRAM

Using the information collected during the pavement inspection, the PAVER pavement management software was used to develop a 5-year M&R program for Corning Municipal Airport. In addition, a 1-year plan for localized preventive maintenance (such as crack sealing and patching) was prepared.

Analysis Parameters

Critical PCIs

PAVER uses critical PCIs to determine whether localized preventive maintenance or major rehabilitation is the appropriate repair action. Above the critical PCI, localized preventive maintenance activities are recommended. Below the critical PCI, major rehabilitation actions, such as an overlay or reconstruction, are recommended. The lowa DOT set the critical PCIs at 65 for runways, 60 for taxiways, and 55 for aprons and T-hangars.

Localized Preventive Maintenance Policies and Unit Costs

Localized preventive maintenance policies were developed for asphalt-surfaced and PCC pavements. These policies, shown in Appendix E, identify the localized preventive maintenance actions that the lowa DOT considered appropriate to correct the different distress types and severities. The lowa DOT provided unit costs for each of the localized preventive maintenance actions included in these policies, and these costs are detailed in Appendix E. Please note that this information is of a general nature for the entire State. The localized preventive maintenance policies and unit costs may require adjustments to reflect specific conditions at Corning Municipal Airport.

Major Rehabilitation Unit Costs

PAVER estimates the cost of major rehabilitation based on the predicted PCI of the pavement section. The lowa DOT provided the costs for major rehabilitation, and they are presented in Appendix E. If major rehabilitation is recommended in the 5-year program, further engineering investigation will be needed to identify the most appropriate rehabilitation action and to estimate the cost of such work more accurately.

Budget and Inflation Rate

An unlimited budget with a start date of July 1, 2025, and an inflation rate of 2.3 percent was used during the analysis.

Analysis Approach

The 5-year M&R program was prepared with the goal of maintaining the pavements above established critical PCIs. During this analysis, major rehabilitation was recommended for pavements in the year they dropped below their critical PCI. For the first year (2025) of the analysis only, a localized preventive maintenance plan was developed for those pavement sections that were above their critical PCI. If major rehabilitation was triggered for a section in 2026 or 2027, then localized preventive maintenance was not recommended for 2025. While localized preventive maintenance should be an annual undertaking at Corning Municipal Airport, it is not possible to accurately predict the propagation of cracking and other distress types. Therefore, the airport should budget for maintenance every year and can use the 2025 localized preventive maintenance plan as a baseline for that work. As the pavements age, it can be assumed that the amount of localized preventive maintenance required will increase.

R18CO

T01CO

\$23,782

\$1,597

Analysis Results

A summary of the M&R program for Corning Municipal Airport is presented in Table 2. Detailed information on the recommended localized preventive maintenance plan for 2025 is provided in Appendix F.

Year	Branch	Section	Surface Type	Type of Repair	Estimated Cost
2025	A01CO	01	PCC	Preventive Maintenance	\$5,627

Table 2. 5-year M&R program under an unlimited funding analysis scenario.

Total Estimated Cost: \$31,000

Preventive Maintenance

Preventive Maintenance

Table Notes:

2025

2025

1. See Figure 3 for the location of the branch and section.

01

01

2. Surface Type: AC = asphalt cement concrete; AAC = asphalt overlay on AC; PCC = portland cement concrete; APC = asphalt overlay on PCC.

PCC

PCC

- 3. Type of Repair: Major Rehabilitation, such as pavement reconstruction or an overlay; Localized Preventive Maintenance, such as crack sealing or patching.
- 4. The estimated costs provided are of a general nature for the entire State and may require adjustments to reflect specific conditions at Corning Municipal Airport.

The recommendations made in this report are based on a broad network-level analysis and meant to provide Corning Municipal Airport with an indication of the type of pavement-related work required during the next 5 years. Further engineering investigation may be necessary to identify which repair action is most appropriate. In addition, the cost estimates provided are based on overall unit costs for the entire State, and Corning Municipal Airport should adjust the plan to reflect local costs.

Because an unlimited budget was used in the analysis, it is possible that the pavement repair program may need to be adjusted to consider economic or operational constraints. The identification of a project need does not necessarily mean that State or Federal funding will be available in the year it is indicated. It is important to remember that regardless of the recommendations presented within this report, Corning Municipal Airport is responsible for repairing pavements where existing conditions pose a hazard to safe operations.

General Maintenance Recommendations

In addition to the specific maintenance actions presented in Appendix F, it is recommended that the following strategies be considered for prolonging pavement life:

- 1. Regularly inspect all safety areas of the airport and document all inspection activity.
- 2. Conduct an aggressive campaign against weed growth through timely herbicide applications and mowing programs of the safety areas. Vegetation growth in pavement cracks is destructive and significantly increases the rate of pavement deterioration.
- 3. Implement a periodic crack and joint sealing program. Keeping water and debris out of the pavement system by sealing cracks and joints is a proven and cost-effective method for extending the life of the pavement system.
- 4. Ensure all edges of pavement maintain the required 1.5-inch lip. This enables the water to drain away from the pavement system.

5. Closely monitor the movement of heavy equipment (particularly farming, construction, mowing, and fueling equipment) to make sure it is only operating on pavements that are designed to accommodate heavy loads. Failure to restrict heavy equipment to appropriate areas may result in the premature failure of airport pavements.

Summary August 2025

SUMMARY

This report documents the results of the pavement evaluation conducted at Corning Municipal Airport. A visual inspection of the pavements in 2025 found that the overall condition of the pavement network is a PCI of 75. A 5-year pavement repair program, shown in Table 2, was generated for Corning Municipal Airport, which revealed that approximately \$31,000 needs to be expended on M&R. Corning Municipal Airport should utilize these study results to assist in planning for future maintenance needs as part of the airport CIP planning process.

References August 2025

REFERENCES

ASTM International (ASTM). Standard Test Method for Airport Pavement Condition Index Surveys. D5340. ASTM International, West Conshohocken, PA.

Federal Aviation Administration Authorization Act of 1994. Public Law No. 103-305. Vol 108 Stat. 1569. 1994.

Federal Aviation Administration (FAA). <u>Guidelines and Procedures for Maintenance of Airport Pavements</u>. Advisory Circular 150/5380-6C. Federal Aviation Administration, Washington, DC.

Federal Aviation Administration (FAA). <u>Airport Pavement Management Program (PMP)</u>. Advisory Circular 150/5380-7B. Federal Aviation Administration, Washington, DC.

US Army Corps of Engineers (USACE). 2009. <u>Asphalt Surfaced Airfields</u>. PAVER Distress Identification Manual. USACE, Washington, DC.

US Army Corps of Engineers (USACE). 2009. <u>Concrete Surfaced Airfields</u>. PAVER Distress Identification Manual. USACE, Washington, DC.

US Army Corps of Engineers (USACE). 2021. PAVER. (Software). US Army Corps of Engineers, Transportation Systems Center, Omaha, NE.

APPENDIX A CAUSE OF DISTRESS TABLES

Cause of Distress Tables August 2025

Table A-1. Cause of pavement distress, asphalt-surfaced pavements (USACE 2009a).

Distress Type	Probable Cause of Distress
Alligator Cracking	Fatigue failure of the asphalt surface under repeated traffic loading.
Bleeding	Excessive amounts of asphalt cement or tars in the mix or low air void content, or both.
Block Cracking	Shrinkage of the asphalt and daily temperature cycling; it is not load associated.
Corrugation	Traffic action combined with an unstable pavement layer.
Depression	Settlement of the foundation soil or can be "built up" during construction.
Jet-Blast Erosion	Bituminous binder has been burned or carbonized.
Joint Reflection Cracking	Movement of the concrete slab beneath the asphalt surface due to thermal and moisture changes.
L&T Cracking	Cracks may be caused by (1) a poorly constructed paving lane joint, (2) shrinkage of the asphalt surface due to low temperatures or hardening of the asphalt, or (3) reflective cracking caused by cracks in an underlying PCC slab.
Oil Spillage	Deterioration or softening of the pavement surface caused by the spilling of oil, fuel, or other solvents.
Patching	N/A
Polished Aggregate	Repeated traffic applications.
Raveling	Asphalt binder may have hardened significantly, causing coarse aggregate pieces to dislodge.
Rutting	Usually caused by consolidation or lateral movement of the materials due to traffic loads.
Shoving	Where PCC pavements adjoin flexible pavements, PCC "growth" may shove the asphalt pavement.
Slippage Cracking	Low-strength surface mix or poor bond between the surface and the next layer of the pavement structure.
Swelling	Usually caused by frost action or by swelling soil.
Weathering	Asphalt binder and/or fine aggregate may wear away as the pavement ages and hardens.

Cause of Distress Tables August 2025

Table A-2. Cause of pavement distress, PCC pavements (USACE 2009b).

Distress Type	Probable Cause of Distress
ASR	Chemical reaction of alkalis in the cement with certain reactive silica minerals. ASR may be accelerated by the use of chemical pavement deicers.
Blowup	Incompressible materials in the joints.
Corner Break	Load repetition combined with loss of support and curling stresses.
Durability Cracking	Concrete's inability to withstand environmental factors, such as freeze-thaw cycles.
Faulting	Upheaval or consolidation.
Joint Seal Damage	Stripping of joint sealant, extrusion of joint sealant, weed growth, hardening of the filler (oxidation), loss of bond to the slab edges, or absence of sealant in the joint.
LTD Cracking	Combination of load repetition, curling stresses, and shrinkage stresses.
Patching (Small and Large)	N/A
Popouts	Freeze-thaw action in combination with expansive aggregates.
Pumping	Poor drainage, poor joint sealant.
Scaling	Over finishing of concrete, deicing salts, improper construction, freeze-thaw cycles, and poor aggregate.
Shattered Slab	Load repetition.
Shrinkage Cracking	Setting and curing of the concrete.
Spalling (Joint and Corner)	Excessive stresses at the joint caused by infiltration of incompressible materials or traffic loads; weak concrete at the joint combined with traffic loads.

APPENDIX B INSPECTION PHOTOGRAPHS

A01CO-01. Overview.

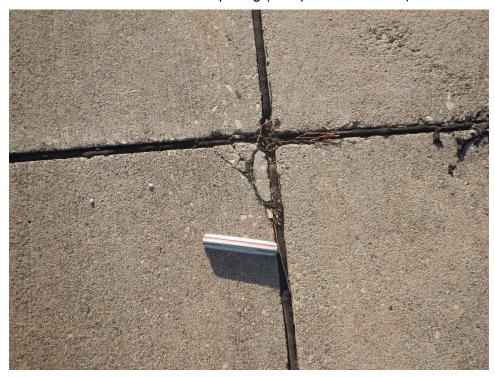
A01CO-01. Corner Spalling (Sample Unit No. 005).

A01CO-01. Shattered Slab (Additional Sample Unit No. 004).

R18CO-01. Overview.

R18CO-01. Corner Spalling (Sample Unit No. 040).

R18CO-01. LTD Cracking (Sample Unit No. 040).


R18CO-01. Shattered Slab (Additional Sample Unit No. 005).

T01CO-01. Overview.

T01CO-01. Corner Spalling (Sample Unit No. 003).

T01CO-01. Faulting (Sample Unit No. 003).

APPENDIX C INSPECTION REPORT

Pavement Database: IA 2024 Generate Date: 8/11/2025

Network ID: CRZ Page 1

Network ID: CRZ			Page 1
Branch Name: APRON	Branch - Section I	D: A01CO - 001	Use: APRON
LCD: 6/1/1987 Surface Type: PCC Rank: P Section Area (sf): 16,000.00 Length (ft): 160.00 Width (ft): 100.00 From: BUILDING To: TAXIWAY	PCI	Family: IowaPCCAP_SC_Local	
Slabs: 101 Slab Length (ft): 12.00 Slab Width (ft): 12.00 Joint Length (ft): 2,181.79	Sec	tion Comments:	
Last Insp Date: 3/28/2025 PCI: 84 Total Samples: 6 Surveyed: 5	Insp	ection Comments:	
Sample Number: 001			
Sample Type: R Sample PCI: 94 Sample Area (Slabs): 16.00	San	pple Comments:	
65 JT SEAL DMG 73 SHRINKAGE CR 75 CORNER SPALL	L N L	16.00 Slabs 1.00 Slabs 1.00 Slabs	
Sample Number: 003			
Sample Type: R Sample PCI: 93 Sample Area (Slabs): 20.00 63 LINEAR CR		nple Comments: 1.00 Slabs	
65 JT SEAL DMG	L L	20.00 Slabs	
Sample Number: 004			
Sample Type: A Sample PCI: 53 Sample Area (Slabs): 16.00	San	pple Comments:	
65 JT SEAL DMG 72 SHAT. SLAB 72 SHAT. SLAB 75 CORNER SPALL	L H M L	16.00 Slabs 1.00 Slabs 1.00 Slabs 1.00 Slabs	
Sample Number: 005			
Sample Type: R Sample PCI: 75 Sample Area (Slabs): 16.00	San	pple Comments:	
65 JT SEAL DMG	L	16.00 Slabs	
74 JOINT SPALL 75 CORNER SPALL	L L	2.00 Slabs 1.00 Slabs	
75 CORNER SPALL 76 ASR	M L	3.00 Slabs 2.00 Slabs	

Pavement Database: IA 2024 Generate Date: 8/11/2025

Network ID: CRZ Page 2

Sample Number: 006

Sample Type: R Sample Comments:

Sample PCI: 93

Sample Area (Slabs): 20.00

65 JT SEAL DMG L 20.00 Slabs 71 FAULTING L 1.00 Slabs

Pavement Database: IA 2024 Generate Date: 8/11/2025

Network ID: CRZ Page 3

Network ID. CRZ			Page 3
Branch Name: RUNWAY 18/36	Branch - Secti	on ID: R18CO - 001	Use: RUNWAY
LCD: 6/1/1987 Surface Type: PCC Rank: P Section Area (sf): 134,200.00 Length (ft): 2,684.00 Width (ft): 50.00 From: RUNWAY END 18 To: RUNWAY END 36		PCI Family: lowaPCCRW_SC_Local	
Slabs: 804 Slab Length (ft): 12.50 Slab Width (ft): 12.50 Joint Length (ft): 17,541.81		Section Comments:	
Last Insp Date: 3/28/2025 PCI: 74 Total Samples: 43 Surveyed: 9		Inspection Comments:	
Sample Number: 004			
Sample Type: R Sample PCI: 78 Sample Area (Slabs): 20.00		Sample Comments:	
65 JT SEAL DMG 75 CORNER SPALL 75 CORNER SPALL 76 ASR	L L M L	20.00 Slabs 4.00 Slabs 3.00 Slabs 2.00 Slabs	
Sample Number: 005			
Sample Type: A Sample PCI: 67 Sample Area (Slabs): 20.00		Sample Comments:	
65 JT SEAL DMG 72 SHAT. SLAB 74 JOINT SPALL 75 CORNER SPALL 75 CORNER SPALL	L M L L M	20.00 Slabs 1.00 Slabs 2.00 Slabs 2.00 Slabs 2.00 Slabs	
Sample Number: 009			
Sample Type: R Sample PCI: 76 Sample Area (Slabs): 20.00		Sample Comments:	
65 JT SEAL DMG 75 CORNER SPALL 75 CORNER SPALL 75 CORNER SPALL	L H L M	20.00 Slabs 2.00 Slabs 1.00 Slabs 1.00 Slabs	

4.00 Slabs

76 ASR

Pavement Database: IA 2024 Generate Date: 8/11/2025 Network ID: CRZ Page 4 Sample Number: 018 Sample Type: R Sample Comments: Sample PCI: 54 Sample Area (Slabs): 20.00 63 LINEAR CR L 5.00 Slabs 65 JT SEAL DMG 20.00 Slabs L 74 JOINT SPALL 1.00 Slabs M **75 CORNER SPALL** Н 1.00 Slabs 4.00 Slabs **75 CORNER SPALL** L 75 CORNER SPALL Μ 7.00 Slabs **76 ASR** L 5.00 Slabs Sample Number: 022 Sample Type: R Sample Comments: Sample PCI: 68 Sample Area (Slabs): 20.00 65 JT SEAL DMG 20.00 Slabs L 1.00 Slabs 74 JOINT SPALL L 74 JOINT SPALL M 1.00 Slabs **75 CORNER SPALL** Н 1.00 Slabs 75 CORNER SPALL 5.00 Slabs Μ **76 ASR** L 4.00 Slabs Sample Number: 027 Sample Type: R Sample Comments: Sample PCI: 80 Sample Area (Slabs): 20.00 2.00 Slabs 63 LINEAR CR L 20.00 Slabs 65 JT SEAL DMG L **75 CORNER SPALL** L 2.00 Slabs 75 CORNER SPALL Μ 2.00 Slabs Sample Number: 032 Sample Type: R Sample Comments: Sample PCI: 80 Sample Area (Slabs): 20.00 65 JT SEAL DMG L 20.00 Slabs 66 SMALL PATCH L 1.00 Slabs **75 CORNER SPALL** L 4.00 Slabs **75 CORNER SPALL** M 4.00 Slabs Sample Number: 036 Sample Type: R Sample Comments: Sample PCI: 71 Sample Area (Slabs): 20.00 65 JT SEAL DMG L 20.00 Slabs 74 JOINT SPALL L 3.00 Slabs 74 JOINT SPALL Μ 1.00 Slabs 75 CORNER SPALL 3.00 Slabs L

Μ

5.00 Slabs

75 CORNER SPALL

Pavement Database: IA 2024 Generate Date: 8/11/2025

Network ID: CRZ Page 5

Sample Number: 040

Sample Type: R Sample Comments:

Sample PCI: 82

Sample Area (Slabs): 20.00

 63 LINEAR CR
 M
 1.00 Slabs

 65 JT SEAL DMG
 L
 20.00 Slabs

 75 CORNER SPALL
 L
 3.00 Slabs

Pavement Database: IA 2024 Generate Date: 8/11/2025

Network ID: CRZ Page 6

	Branch - Section	n ID: T01CO - 001	. age c
Branch Name: TAXIWAY 01	Branch - Occilo	11 15: 10100 - 001	Use: TAXIWAY
LCD: 6/1/1987 Surface Type: PCC Rank: P Section Area (sf): 7,425.00 Length (ft): 215.00 Width (ft): 25.00 From: APRON 01 To: RUNWAY 17/35	F	PCI Family: lowaPCCTW_SC_Local	
Slabs: 62 Slab Length (ft): 12.00 Slab Width (ft): 12.50 Joint Length (ft): 881.22	5	Section Comments:	
Last Insp Date: 3/28/2025 PCI: 70 Total Samples: 3 Surveyed: 3	I	nspection Comments:	
Sample Number: 001			
Sample Type: R Sample PCI: 59 Sample Area (Slabs): 21.00 65 JT SEAL DMG 71 FAULTING 71 FAULTING 74 JOINT SPALL 74 JOINT SPALL	L L M L	21.00 Slabs 2.00 Slabs 3.00 Slabs 1.00 Slabs 1.00 Slabs	
75 CORNER SPALL	L	5.00 Slabs	
75 CORNER SPALL Sample Number: 002	M	2.00 Slabs	
Sample Type: R Sample PCI: 89 Sample Area (Slabs): 20.00	5	Sample Comments:	
65 JT SEAL DMG 75 CORNER SPALL	L L	20.00 Slabs 5.00 Slabs	
Sample Number: 003			
Sample Type: R Sample PCI: 62 Sample Area (Slabs): 21.00	ξ	Sample Comments:	
63 LINEAR CR 65 JT SEAL DMG 71 FAULTING 71 FAULTING 75 CORNER SPALL	L M L M L	1.00 Slabs 21.00 Slabs 1.00 Slabs 3.00 Slabs 1.00 Slabs	

1.00 Slabs

75 CORNER SPALL

APPENDIX D WORK HISTORY REPORT

WORK HISTORY

Pavement Database: IA 2024 Generate Date: 6/30/2025

Network ID: CRZ Page 1

Network: CORNING MUNICIPAL AIRPORT

Branch - Section ID: A01CO - 001

 LCD: 6/1/1987
 Length (ft):
 160.00

 Use: APRON
 Width (ft):
 100.00

 Rank: P
 True Area (sf):
 16,000.00

Surface: PCC

Work Date	Work Code	Work Description	Cost	Thickness (in)	Major MR	Comments
06-01-2023	JS-LC	Joint Seal (Localized)	\$0.00	0.00	False	-
06-01-2012	CS-PC	Crack Sealing - PCC	\$0.00	0.00	False	-
06-01-2012	JS-LC	Joint Seal (Localized)	\$0.00	0.00	False	-
06-01-1987	NC-PC	New Construction - PCC	\$0.00	0.00	True	-

Branch - Section ID: R18CO - 001

 LCD: 6/1/1987
 Length (ft):
 2,684.00

 Use: RUNWAY
 Width (ft):
 50.00

 Rank: P
 True Area (sf):
 134,200.00

Surface: PCC

Work Date	Work Code	Work Description	Cost	Thickness (in)	Major MR	Comments
06-02-2012	SL-PC	Slab Replacement - PCC	\$0.00	0.00	False	FIED EST.
06-01-2012	JS-LC	Joint Seal (Localized)	\$0.00	0.00	False	-
06-01-2012	CS-PC	Crack Sealing - PCC	\$0.00	0.00	False	-
06-01-1987	NC-PC	New Construction - PCC	\$0.00	0.00	True	-

Branch - Section ID: T01CO - 001

 LCD: 6/1/1987
 Length (ft):
 215.00

 Use: TAXIWAY
 Width (ft):
 25.00

 Rank: P
 True Area (sf):
 7,425.00

Surface: PCC

Work Date	Work Code	Work Description	Cost	Thickness (in)	Major MR	Comments
06-01-2012	CS-PC	Crack Sealing - PCC	\$0.00	0.00	False	-
06-01-2012	JS-LC	Joint Seal (Localized)	\$0.00	0.00	False	-
01-01-2010	PA-PP	Patching - PCC Partial Depth	\$0.00	0.00	False	-
06-01-1987	NC-PC	New Construction - PCC	\$0.00	0.00	True	-

APPENDIX E

LOCALIZED PREVENTIVE MAINTENANCE POLICIES AND UNIT COST TABLES

Table E-1. Localized preventive maintenance policy, asphalt-surfaced pavements.

Distress Type	Severity Level	Maintenance Action		
Alligator Cracking	Low	Monitor		
Alligator Cracking	Medium	Asphalt Patch		
Alligator Cracking	High	Asphalt Patch		
Bleeding	N/A	Monitor		
Block Cracking	Low	Monitor		
Block Cracking	Medium	Crack Seal—Asphalt		
Block Cracking	High	Crack Seal—Asphalt		
Corrugation	Low	Monitor		
Corrugation	Medium	Asphalt Patch		
Corrugation	High	Asphalt Patch		
Depression	Low	Monitor		
Depression	Medium	Monitor		
Depression	High	Asphalt Patch		
Jet-Blast Erosion	N/A	Asphalt Patch		
Joint Reflection Cracking	Low	Monitor		
Joint Reflection Cracking	Medium	Crack Seal—Asphalt		
Joint Reflection Cracking	High	Crack Seal—Asphalt		
L&T Cracking	Low	Monitor		
L&T Cracking	Medium	Crack Seal—Asphalt		
L&T Cracking	High	Crack Seal—Asphalt		
Oil Spillage	N/A	Asphalt Patch		
Patching	Low	Monitor		
Patching	Medium	Asphalt Patch		
Patching	High	Asphalt Patch		
Polished Aggregate	N/A	Monitor		
Raveling	Low	Monitor		
Raveling	Medium	Asphalt Patch		
Raveling	High	Asphalt Patch		
Rutting	Low Monitor			
Rutting	Medium	Monitor		
Rutting	High	Asphalt Patch		
Shoving	Low	Monitor		
Shoving	Medium	Asphalt Patch		
Shoving				
Slippage Cracking				
Swelling	Low	Monitor		
Swelling	Medium	Monitor		
Swelling	High	Asphalt Patch		
Weathering				
Weathering	Medium	Monitor		
Weathering	High	Asphalt Patch		

Table E-2. Localized preventive maintenance policy, PCC pavements.

	Severity			
Distress Type	Level	Maintenance Action		
ASR	Low	Monitor		
ASR	Medium	Slab Replacement		
ASR	High	Slab Replacement		
Blowup	Low	Slab Replacement		
Blowup	Medium	Slab Replacement		
Blowup	High	Slab Replacement		
Corner Break	Low	Crack Seal—PCC		
Corner Break	Medium	Full Depth PCC Patch		
Corner Break	High	Full Depth PCC Patch		
Durability Cracking	Low	Monitor		
Durability Cracking	Medium	Full Depth Patch		
Durability Cracking	High	Slab Replacement		
Faulting	Low	Monitor		
Faulting	Medium	Grinding		
Faulting	High	Slab Replacement		
Joint Seal Damage	Low	Monitor		
Joint Seal Damage	Medium	Joint Seal		
Joint Seal Damage	High	Joint Seal		
LTD Cracking	Low	Monitor		
LTD Cracking	LTD Cracking Medium			
LTD Cracking High		Slab Replacement		
Patching (Small and Large)	Low	Monitor		
Patching (Small and Large)	Medium	Full Depth PCC Patch		
Patching (Small and Large)	High	Full Depth PCC Patch		
Popouts	N/A	Monitor		
Pumping	N/A	Monitor		
Scaling	Low	Monitor		
Scaling	Medium	Partial Depth PCC Patch		
Scaling	High	Slab Replacement		
Shattered Slab	Low	Crack Seal—PCC		
Shattered Slab	Medium	Slab Replacement		
Shattered Slab	High	Slab Replacement		
Shrinkage Cracking	N/A	Monitor		
Spalling (Joint and Corner)	Low	Monitor		
Spalling (Joint and Corner)	Medium	Partial Depth PCC Patch		
Spalling (Joint and Corner)	High	Partial Depth PCC Patch		

Table E-3. 2025 unit costs for localized preventive maintenance actions.

Maintenance Action	Unit Cost		
Asphalt Patch—Asphalt-Surfaced Pavement	\$15.90/sf		
Crack Sealing—Asphalt-Surfaced Pavement	\$2.72/If		
Partial Depth PCC Patch—PCC Pavement	\$40.74/sf		
Full Depth PCC Patch—PCC Pavement	\$18.19/sf		
Crack Sealing—PCC Pavement	\$3.27/If		
Joint Sealing—PCC Pavement	\$3.27/If		
Grinding—PCC Pavement	\$0.39/sf		
Slab Replacement—PCC Pavement	\$18.19/sf		

Table Note: The unit cost estimates are based on broad statewide numbers and should be adjusted to reflect local costs.

Table E-4. 2025 unit costs (per square foot) based on pavement type and PCI ranges.

Pavement Type	PCI Range 0-40	PCI Range 40-50	PCI Range 50-60	PCI Range 60-70	PCI Range 70–80	PCI Range 80-90	PCI Range 90–100
Asphalt- surfaced	\$11.29	\$5.34	\$5.34	\$5.34	\$0.00	\$0.00	\$0.00
PCC	\$18.86	\$8.92	\$8.92	\$8.92	\$0.00	\$0.00	\$0.00

Table Notes:

- The unit cost estimates are based on broad statewide numbers and should be adjusted to reflect local costs.
- Pavement Type: Asphalt-surfaced = AC (asphalt cement concrete), AAC (asphalt overlay on AC), or APC (asphalt overlay on PCC); PCC = portland cement concrete

APPENDIX F

YEAR 2025 LOCALIZED PREVENTIVE MAINTENANCE DETAILS

Year 2025 Localized Preventive Maintenance Details

Table F-1. Year 2025 localized preventive maintenance details.

Branch	Section	Distress Type	Severity	Distress Quantity	Distress Unit	Maintenance Action	Unit Cost	2025 Estimated Cost
A01CO	01	Corner Spalling	Medium	4	Slabs	Patching - PCC Partial Depth	\$40.74	\$388
A01CO	01	Shattered Slab	Medium	1	Slabs	Slab Replacement - PCC	\$18.19	\$2,619
A01CO	01	Shattered Slab	High	1	Slabs	Slab Replacement - PCC	\$18.19	\$2,619
R18CO	01	Corner Spalling	Medium	134	Slabs	Patching - PCC Partial Depth	\$40.74	\$14,723
R18CO	01	Corner Spalling	High	20	Slabs	Patching - PCC Partial Depth	\$40.74	\$2,149
R18CO	01	Joint Spalling	Medium	15	Slabs	Patching - PCC Partial Depth	\$40.74	\$3,868
R18CO	01	LTD Cracking	Medium	5	Slabs	Crack Sealing - PCC	\$3.27	\$200
R18CO	01	Shattered Slab	Medium	1	Slabs	Slab Replacement - PCC	\$18.19	\$2,842
T01CO	01	Corner Spalling	Medium	3	Slabs	Patching - PCC Partial Depth	\$40.74	\$329
T01CO	01	Faulting	Medium	6	Slabs	Grinding (Localized)	\$0.39	\$29
T01CO	01	Joint Seal Damage	Medium	21	Slabs	Joint Seal (Localized)	\$3.27	\$976
T01CO	01	Joint Spalling	Medium	1	Slabs	Patching - PCC Partial Depth	\$40.74	\$263

Table Notes:

- 1. See Figure 3 for the location of the branch and section.
- 2. Distress types are defined by ASTM D5340. L&T cracking = longitudinal and transverse cracking; LTD cracking = longitudinal, transverse, and diagonal cracking; ASR = alkali-silica reaction.
- 3. The costs provided are of a general nature for the entire State and may require adjustments to reflect specific conditions at Corning Municipal Airport.

PREPARED FOR

Iowa Department of Transportation Modal Transportation Bureau 800 Lincoln Way Ames, Iowa 50010 515-239-1691 https://iowadot.gov/modes-travel/aviation

AUGUST 2025